多项式反三角函数
Description
给定多项式
Method
仿照求多项式
那么代入
直接按式子求就可以了。
Code
"多项式反三角函数"
constexpr int maxn = 262144;
constexpr int mod = 998244353;
using i64 = long long;
using poly_t = int[maxn];
using poly = int *const;
inline void derivative(const poly &h, const int n, poly &f) {
for (int i = 1; i != n; ++i) f[i - 1] = (i64)h[i] * i % mod;
f[n - 1] = 0;
}
inline void integrate(const poly &h, const int n, poly &f) {
for (int i = n - 1; i; --i) f[i] = (i64)h[i - 1] * inv[i] % mod;
f[0] = 0; /* C */
}
void polyarcsin(const poly &h, const int n, poly &f) {
/* arcsin(f) = ∫ f' / sqrt(1 - f^2) dx */
static poly_t arcsin_t;
const int t = n << 1;
std::copy(h, h + n, arcsin_t);
std::fill(arcsin_t + n, arcsin_t + t, 0);
DFT(arcsin_t, t);
for (int i = 0; i != t; ++i) arcsin_t[i] = sqr(arcsin_t[i]);
IDFT(arcsin_t, t);
arcsin_t[0] = sub(1, arcsin_t[0]);
for (int i = 1; i != n; ++i)
arcsin_t[i] = arcsin_t[i] ? mod - arcsin_t[i] : 0;
polysqrt(arcsin_t, n, f);
polyinv(f, n, arcsin_t);
derivative(h, n, f);
DFT(f, t);
DFT(arcsin_t, t);
for (int i = 0; i != t; ++i) arcsin_t[i] = (i64)f[i] * arcsin_t[i] % mod;
IDFT(arcsin_t, t);
integrate(arcsin_t, n, f);
}
void polyarccos(const poly &h, const int n, poly &f) {
/* arccos(f) = - ∫ f' / sqrt(1 - f^2) dx */
polyarcsin(h, n, f);
for (int i = 0; i != n; ++i) f[i] = f[i] ? mod - f[i] : 0;
}
void polyarctan(const poly &h, const int n, poly &f) {
/* arctan(f) = ∫ f' / (1 + f^2) dx */
static poly_t arctan_t;
const int t = n << 1;
std::copy(h, h + n, arctan_t);
std::fill(arctan_t + n, arctan_t + t, 0);
DFT(arctan_t, t);
for (int i = 0; i != t; ++i) arctan_t[i] = sqr(arctan_t[i]);
IDFT(arctan_t, t);
inc(arctan_t[0], 1);
std::fill(arctan_t + n, arctan_t + t, 0);
polyinv(arctan_t, n, f);
derivative(h, n, arctan_t);
DFT(f, t);
DFT(arctan_t, t);
for (int i = 0; i != t; ++i) arctan_t[i] = (i64)f[i] * arctan_t[i] % mod;
IDFT(arctan_t, t);
integrate(arctan_t, n, f);
}
本页面最近更新:2/3/2023, 12:00:00 AM,更新历史
发现错误?想一起完善? 在 GitHub 上编辑此页!
本页面的全部内容在 CC BY-SA 4.0 和 SATA 协议之条款下提供,附加条款亦可能应用